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Abstract
The recent paradigm shift introduced by the Internet of
Things (IoT) has brought embedded systems into focus as
a target for both security analysts and malicious adversaries.
Typified by their lack of standardized hardware, diverse soft-
ware, and opaque functionality, IoT devices present unique
challenges to security analysts due to the tight coupling
between their firmware and the hardware for which it was de-
signed. In order to take advantage of modern program analysis
techniques, such as fuzzing or symbolic execution, with any
kind of scale or depth, analysts must have the ability to exe-
cute firmware code in emulated (or virtualized) environments.
However, these emulation environments are rarely available
and are cumbersome to create through manual reverse
engineering, greatly limiting the analysis of binary firmware.

In this work, we explore the problem of firmware
re-hosting, the process by which firmware is migrated
from its original hardware environment into a virtualized
one. We show that an approach capable of creating virtual,
interactive environments in an automated manner is a
necessity to enable firmware analysis at scale. We present
the first proof-of-concept system aiming to achieve this
goal, called PRETENDER, which uses observations of the
interactions between the original hardware and the firmware
to automatically create models of peripherals, and allows
for the execution of the firmware in a fully-emulated
environment. Unlike previous approaches, these models
are interactive, stateful, and transferable, meaning they are
designed to allow the program to receive and process new
input, a requirement of many analyses. We demonstrate
our approach on multiple hardware platforms and firmware
samples, and show that the models are flexible enough to
allow for virtualized code execution, the exploration of new
code paths, and the identification of security vulnerabilities.

1 Introduction

The new wave of commercialized embedded systems, brought
about by trends such as the IoT, has resulted in their use for an

increasing number of security and safety-critical applications.
The most unusual feature of this new computing paradigm is
its extreme diversity, in terms of both hardware and software.
At the software level, each new device comes with its unique
firmware, which is purpose-built for its specific function,
and may not include a conventional operating system. At
the hardware level, each device includes its own unique
selection of hardware, both on the board (sensors, actuators,
etc.) and on the chip (bus controllers, timers, and other I/O
peripherals), which combine to form the unique execution
environment of the firmware.

Unfortunately for security researchers, in stark contrast to
the desktop and mobile ecosystems, market forces have not
created any de facto standard for components, protocols, or
software, hampering existing program analysis approaches,
and making the understanding of each new device an
independent, mostly manual, time-consuming effort.

Emulators for these systems are a key component in en-
abling dynamic analysis of the firmware at scale, as transpar-
ent on-device analysis is rarely possible, and it is impractical
to acquire hundreds of identical physical devices to parallelize
the analysis process. However, appropriate emulators are
typically unavailable, particularly due to the impracticality of
properly supporting the thousands of incompatible embedded
CPUs, and an enormous selection of external peripherals.
Worse yet, the physicality of these devices means that
analyzing their firmware without the sensors, actuators, and
other components may not be useful, or even possible at all.

Previous efforts have avoided the problem through the use
of an operating system abstraction [3, 8], or with a hardware-
in-the-loop scheme [15, 16, 26]. However, these techniques
impose severe limits on the scale and scope of analyzable
targets, such as requiring that a general-purpose OS is present,
or a significant amount of potentially costly original hardware
to be tractable. Without these approaches, analysts must
manually implement models of all the on-chip and off-chip
peripherals for a device. This requires that the analyst can
obtain complete documentation or thorough understanding
for every component of the system, and spends the time
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to manually develop components usable by the emulator.
Manufacturers can also use completely custom components,
for which no documentation can be obtained, rendering
emulation by any existing method extremely difficult.

We explore the possibility of automated firmware re-
hosting. The key idea behind firmware re-hosting consists of
analyzing a given firmware/hardware combination (possibly
through multiple execution rounds), understanding what the
firmware expects from the surrounding hardware, and then
attempting to replace the hardware altogether, so that the
firmware analysis can be carried out with software-only com-
ponents. In essence, firmware re-hosting would allow analysts
to decouple the execution of firmware from the hardware on
which it expects to be executed. This allows for the scaling
of popular dynamic analysis techniques, outperforming
hardware-in-the-loop or device-only approaches [20].

We identified four key aspects that are necessary for
building a re-hosting solution to deal with today’s embedded
firmware: A re-hosting scheme must be virtual to allow for
scale and reduce costs; should also be interactive, to allow
the firmware to process new input and actually withstand
program analysis; should be abstraction-less (i.e., it should
not rely on high-level concepts, such as operating systems and
hardware abstraction layers) to allow the system to handle
the widest possible variety of firmware. Finally, re-hosting
should be automated, so that the system can overcome the
extreme diversity that is impractical for humans to handle.
Although previous approaches to the problem are numerous,
all are missing at least one of these aspects.

In this work, we develop an approach to re-hosting
that achieves all of them, and propose a proof-of-concept
system, called PRETENDER, which is able to observe
hardware-firmware interactions and create models of
hardware peripherals automatically. Our system first creates
a recording of real interactions between the firmware and its
hardware, and uses machine learning and pattern recognition
techniques to create models for each peripheral on the
CPU. The generated models can then be leveraged by
popular full-system emulators (e.g., QEMU [2]) or program
analysis engines (e.g., angr [23]) to enable precise, scalable,
interactive analyses of the accompanying firmware.

While automated re-hosting may seem conceptually
straightforward, the challenges in modeling even simple
hardware-firmware interactions are numerous. We may think
of a peripheral, such as a serial port, as a simple object
that sends and receives data, but the firmware’s view of this
hardware is much more complex, consisting of dozens of
individual configuration, status, or data registers, which, from
the point-of-view of the firmware, appear as only opaque
memory accesses, without any indication of their layout or
behavior. Two peripherals performing the same function on
two different CPUs, even from the same vendor, vary wildly
in terms of memory layout and implementation details. On
top of this, accesses to these peripherals occur within the

CPU itself, and obtaining these interactions for modeling is
its own challenge. Interrupts are also a common feature of
embedded peripherals, and must occur exactly as expected,
or the hardware or firmware may fail.

To evaluate our approach, we demonstrate our recording
and modeling techniques on a set of six unique “blob”
firmware samples,each on three different hardware platforms,
with associated external peripheral devices. Our experiments
show that PRETENDER is able to successfully extract the
peripheral models and execute the firmware in a fully
emulated environment. The models offer enough interactivity
to allow for the exploration of parts of the program not
seen during recording or training. We further show the
potential for direct applications to dynamic analysis, by using
these modeled environments to trigger synthetic security
vulnerabilities in the firmware samples. The hardware
modeled in these experiments represents CPUs and other
components common to low-power IoT and embedded
devices. However, many challenges remain before typical
commercial devices can be modeled in full. We nevertheless
believe that the goal of automated firmware re-hosting is
both achievable and necessary. Therefore, we conclude with
a discussion of limitations, open problems, and next steps
toward tackling the complexity of commercial devices.

In summary, our contributions are as follows:
• We explore the problem of firmware re-hosting, and show

that virtual, interactive, automatic, and abstraction-less
approaches are needed to handle today’s diverse firmware.

• We present PRETENDER, a proof-of-concept system able
to automatically build hardware models, through a mix
of novel hardware and interrupt recording techniques,
machine learning, and peripheral state approximation.1.

• We apply PRETENDER to multiple firmware samples
across multiple hardware platforms and show that the
generated peripheral models are accurate, automatic,
and interactive enough to enable program analysis and
vulnerability discovery.

2 The Re-hosting Problem

To deal with the plethora of software applications that need
to be analyzed on desktop and mobile platforms, the security
community has developed many techniques for enabling the
scalable analysis of programs to find bugs and detect malice.
In this section, we examine what makes embedded systems
different and much less tractable to these techniques, as
well as propose qualities that a system capable of analyzing
arbitrary firmware must have.

Today’s state-of-the-art program analysis techniques, in-
cluding dynamic analysis tools such as AFL [27] or symbolic
execution engines such as angr [23] or S2E [4], rely on some

1To allow the reproducibility of this work, the source code to this work
is available at https://github.com/ucsb-seclab/pretender
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form of abstraction to be tractable. Dynamic approaches typ-
ically rely on virtualization to enable parallel, scalable anal-
yses, while symbolic approaches rely on function summariza-
tion of the underlying operating system to minimize the code
that they need to execute. In order to use any of these tools,
the analyst must take the program out of its original execu-
tion environment, and provide a suitable analysis environment
able to execute it. This is a process referred to as re-hosting.

For desktop and mobile programs, the standardization
of the execution environments (e.g., commodity hardware,
which consists of a relatively small number of OSes and archi-
tectures) has made this re-hosting process simpler. However,
with embedded firmware, many well-established assumptions
fail. For example, there may not be a general-purpose
operating system designed to run arbitrary code on the device,
leaving the analyst to deal with the hardware directly. This is
especially true for low-power IoT devices, which are typically
based on microcontroller-class CPUs that lack the ability
to run such OSes. Firmware for these devices is typically
obtained in the form of a binary blob, an opaque code object
containing no metadata about its contents. How this blob is
handled is entirely dependent on the CPU hardware, and will
vary widely from chip to chip. This also makes distinguishing
between library code and device-specific code challenging.
With no visible abstractions to use, the execution environment
for embedded firmware is the hardware itself. We can break
this hardware down into three distinct categories:

• CPU Core. The CPU core itself must, of course, be emu-
lated. This includes the instruction set, but also any func-
tion able to directly alter code execution, such as the chip’s
primary interrupt controller.

• On-Chip Peripherals. These peripherals include timers,
bus controllers, serial ports, General Purpose Input and Out-
put (GPIO), and other features typically included on the
die of the CPU itself. Most CPUs expose these peripherals
to the program as Memory-Mapped Input/Output (MMIO),
where they are organized as a group of contiguous memory
locations, that do not behave like normal memory. Each
group may contain multiple locations, used for configur-
ing, checking the status of, and exchanging data with the
peripheral. An example of a typical MMIO peripheral map-
ping is shown in Figure 1. On-chip peripherals are also
responsible for issuing interrupts, events that trigger asyn-
chronous changes in control flow in response to a hardware
event. More precisely, a peripheral is associated with one
or more numbered interrupt “channels” or “lines”; when an
interrupt occurs, the code in the firmware associated with
that interrupt (known as an Interrupt Service Routine, or
ISR) is executed. When, how, and why a peripheral issue
interrupts are all properties of the peripheral’s hardware on
a particular chip, but typically includes the arrival of data,
the expiration of timers, and error conditions.

• External Peripherals. These peripherals are the sen-
sors, actuators, and other circuitry on the device’s circuit

Table 1: Excerpt of tools tackling the re-hosting problem

Tool Virtual Interactive Abstraction-less Automatic
Simics [17] X X X -
FIE [9] X X X -
Avatar [26] - X X -
PROSPECT [14, 15] - X - X
Surrogates [16] - X X -
Firmadyne [3] X X - X
Avatar2 [19] X X X -
PRETENDER X X X X

board(s). They are exposed to the program only through
one of the on-chip peripherals, including GPIO, or a bus
such as Inter-Integrated Circuit (I2C) or Serial Peripheral
Interface (SPI). While from the programmer’s perspective,
communicating with these peripherals is as easy as sending
and receiving messages thanks to software libraries, the
resulting compiled firmware does so through a complex
series of accesses to the MMIO regions of on-chip periph-
erals, making the direct flow of data in and out of each
peripheral difficult to observe. This is also the source of the
most variety in embedded systems, as these devices typi-
cally contain entirely-custom circuit boards, with whatever
array of components the designers felt were necessary.

2.1 Re-hosting Aspects and Related Work
Many solutions have been proposed to enable firmware
re-hosting, each with their own qualities and drawbacks. To
showcase their differences, we identify four salient properties
that an ideal analysis system, capable of handling arbitrary
firmware, should possess. Table 1 shows prevalent tools that
tackled the re-hosting problem in the past, and classifies them
according to the aspects, which are described as follows.

Virtual. A re-hosting solution should not depend on the pres-
ence of hardware during analysis. Many proposed approaches
to firmware analysis [7, 15, 16, 26] require hardware-in-the-
loop execution. However, such approaches inherently limit the
scale of the analyses. In a dynamic context, only one thread
of execution is possible per-device, and re-starting execution,
which happens very often in modern fuzzers, can incur a sig-
nificant time penalty [20]. Symbolic execution is even more
impacted by such approaches; analyses using hardware-in-
the-loop must be careful to only execute portions of code that
do not contain hardware interactions, to avoid corrupting the
hardware’s state visible by all parallel code paths being ex-
plored. Cost also becomes a factor, as each analyst wishing to
explore a set of devices must purchase and instrument the de-
vices, which raises the barrier to entry for firmware analysis.
While hardware-in-the-loop techniques do allow for inter-
active, relatively low-effort analyses, they are by no means
adequate for thorough program analyses of arbitrary firmware.

Interactive. A re-hosting solution should be responsive
to new program input. While defining the notion of input
on an embedded firmware is itself a nuanced problem, the
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remaining hardware (not used as the source of input) should
react accordingly. Trace replay-based solutions, such as
PANDA [10], while quite flexible and useful for certain
analyses, are not interactive and cannot be used to implement
fuzzing or symbolic execution, which rely on this primitive.
Abstraction-less. An ideal re-hosting solution should not
rely on a software abstraction that greatly limits the kinds
of firmware on which it can be used. Recently, advances have
been made in re-hosting firmware based on the abstractions
provided by the Linux OS [3, 8]. Using such an abstraction,
when it exists, is advantageous, but it naturally limits the
scope of firmware to those that do not have a significant
coupling between their primary function and the underlying
hardware. Relying on an OS precludes the analysis of, for
example, the blob firmware we explore in this work.
Automatic. An ideal re-hosting solution should not require
a significant effort per-device to use. The diversity in on-chip
and external peripherals is so severe, that it is highly unlikely
that any firmware can be emulated out-of-the-box with a
commercial or open-source emulation package. While some
commercial systems provide the ability to rehost completely
custom hardware architectures (e.g., Simics [17]), these sys-
tems still require the hardware models to be programmed man-
ually. This is made worse by customizable CPU cores, and the
diverse array of electronics components that the electronics
industry continues to support. Even static and symbolic anal-
ysis tools [9, 12, 22] heavily rely on the manual specification
of hardware behavior, particularly around IO and interrupts.

While there is little useful data able to quantify embedded
CPU diversity, and documentation from vendors is not
in a comparable form, we managed to locate a dataset of
555 CMSIS System View Description (SVD) files [21],
which are XML files describing chipsets based on Cortex-M
microcontrollers. They detail the on-chip peripheral locations
and layouts of 463 distinct chips across 13 different chip
vendors. This collection is by no means complete (it does
not even include all of the chips used in our experiments in
Section 4), but it shows the complexity and the scale of this
problem. In this dataset alone, we could identify 1592 unique
implementations of peripherals demonstrating the immense
variety of peripheral and chip designs.

This complexity increases even more when considering
external peripherals connected to the chip via on-chip buses
and interrupt controllers. Hence, emulators such as QEMU [2]
have to include carefully and—up to now—manually crafted
implementations of peripherals and align them at the right
location. In fact, the upstream version of QEMU only exposes
implementations for three different Cortex-M chips, none of
them present in the above dataset. As a result, analysts end
up creating their own peripheral and board implementations
and maintaining them in separate forks of the project, such
as QEMU STM32 [1] or GNU MCU Eclipse [13]. A different
approach is taken by LuaQEMU [5] and avatar2 [19], which
provide an interface for the analyst to define the peripheral
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Figure 1: The memory layout for a simple 32 bit memory-mapped
timer on the STM32 embedded processor.

layout. While these may be preferable to languages such as
C used by QEMU itself, the analyst is still required to obtain
and understand the full documentation for the particular CPU
model used, and this effort may not transfer entirely to other
similar CPUs, even from the same vendor. Therefore, it is
very clear that an automated solution is needed to be able to
make firmware analysis tractable.

While we, of course, do not claim to have achieved the
goal of ideal re-hosting in this work, in the following sections,
we will showcase a proof-of-concept approach that has all of
the above properties, with limitations discussed in Section 5.

3 Methodology

In this section, we present PRETENDER, a step toward
automating the modeling of MMIO and interrupt-driven
hardware peripherals to enable re-hosting. The goal is to
gather data on, and build models of, these peripherals, such
that the firmware under analysis can later be independently
executed in a CPU emulator. We present our solution in the
context of its use to support dynamic analysis of firmware,
although the generated models have other possible uses,
which we will discuss in more detail in Section 5.

The success metric we adopt to evaluate the completeness
of the extracted models is what we call survivable execution,
which we define as the ability for the firmware to execute the
same regions of code as it would if the original hardware were
present, without faulting, stalling, or otherwise impeding this
process. We include in this definition the need for our program
to be interactive, as this is a requirement for many analyses.
That is, the firmware and our hardware models need to be able
to operate on inputs and execute code paths that were not
observed during the recording and model-generation phase.

Assumptions and Prerequisites. We make a few basic
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Figure 2: Overview of the functionality of PRETENDER

assumptions in the implementation of PRETENDER.

• We assume that a CPU emulator is available for the target
device, and that this emulator supports all CPU features that
can impact control flow, including the interrupt controller.

• We assume the analyst has the ability to observe memory
accesses and the occurrence of interrupts in the device in
real-time. We will present a method for accomplishing this
on any device with a basic debugging interface, lowering
the requirement to the ability to read and write the device’s
memory.

• We assume that the basic memory layout of the target
device is known, particularly the location of code and data
in the memory space. More generally, we need to know
where these areas are not located, as we can assume that
the remaining areas are interesting locations we wish to
model, including the MMIO regions.

• We assume that a human or automated process is able to
interact with the hardware and that it achieves sufficient
code coverage during the recording phase to reveal enough
hardware interactions to generate a model. The more
complete the code coverage is, the more detailed the
extracted model will be.

A discussion of these assumptions can be found in Section 5.
PRETENDER works in the following phases:

1. Recording. We instrument the device to obtain a trace
of accesses to the MMIO regions, and any interrupt that
occurs during the execution.

2. Peripheral Clustering. We locate the boundaries of each
distinct peripheral within the device’s memory space,
and divide the recording into sub-recordings for each
peripheral.

3. Interrupt Inference. Based on the interleaving of
interrupts with MMIO, we assign each numbered interrupt
event to a peripheral group. We then infer which bits in

which memory location in the peripheral control interrupts,
and create timing patterns to be used during emulation.

4. Memory Model Training. In this step, we attempt
to select and train known models for each memory
location within the identified peripheral regions. Any
unidentified memory locations will be modeled using
State Approximation.

5. Test Harness Creation. Finally, the analyst must decide
how input should be introduced into the system, through
the creation of a simple test harness. This is the only
manual step in the process, as the decision depends on the
analyst’s needs.

A complete overview of PRETENDER and the interplay
between its different parts can be seen in Figure 2. In the
remainder of this section, we will discuss the individual
phases of the system in detail.

3.1 Recording

On ARM-based platforms, MMIO accesses occur through nor-
mal load or store instructions from the CPU, and take place
across the CPU’s internal memory buses. Since we cannot ob-
serve this activity directly, or either via a debugger or through
physical access, we can instead effectively extend the memory
bus outside the chip where the data required for modeling can
be recorded. To this end, we leverage a hardware-in-the-loop
execution approach, where the firmware is deployed in an em-
ulator, and the MMIO requests are forwarded to the original
hardware, which allows recording in-transit. We built upon the
avatar2 framework [19], which allows for the simultaneous
control and orchestration of emulators and hardware. Avatar2

supports an event-based callback infrastructure, which al-
lowed us to implement the recording of memory events. All
extensions and modifications to avatar2 developed during this
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indicates the initial state.

work will be released as open-source alongside with the code
of PRETENDER upon the publication of this paper.

Recording Interrupts In order to fully model on-chip
hardware peripherals, we must observe the interrupts that
they generate, in the context of the MMIO activity of the
firmware.2 Figure 3 shows how interrupts are recorded in
PRETENDER. As interrupts are generated on the real device,
we should have the Real CPU running. Hence, we always
have the Real CPU execute an infinite loop. Furthermore,
we replace the ISR of all the interrupts with a recording stub
(shown in dotted box in the Figure 3).

When an interrupt occurs (Step 1), the recording stub is
triggered, which immediately reports the interrupt number
to PRETENDER (i.e., the Emulated CPU), and halts the Real
CPU (Step 2). The emulated CPU then starts executing the
actual ISR for the corresponding interrupt, and directs the
real CPU to run a loop in the interrupt’s context to mimic the
execution of the interrupt (Step 3). Once the ISR completes
execution on the emulated CPU (Step 4), PRETENDER
redirects the execution of the Real CPU to the default infinite
loop, and the Emulated CPU to continue executing the
firmware (Step 5). This ensures that both the hardware and
emulated interrupt controllers are synchronized.

3.2 Peripheral Clustering

With the combined MMIO and interrupt recording collected,
we can now proceed to reason about and model the peripherals
themselves. In the end, we need to construct a model, such that
each MMIO location that the firmware accesses returns a rea-
sonable value. However, these locations are not independent;
multiple locations represent one logical device in the silicon of

2Recording interrupts is a particularly complex matter, requiring precise
synchronization of the emulator and hardware to avoid incorrect behavior.
We detail the problem and the rationale behind our approach in Appendix A.

the chip, which has its own concept of state, control interrupts,
and so on. For example, writing a byte to the data register of
a serial port may cause the “transfer in progress” or “busy”
flag to become active in the same peripheral’s status register.
Therefore, a major prerequisite to the future modeling steps is
to group all memory accesses by their associated peripherals.

To do this, we rely on the intuition that each MMIO periph-
eral is typically associated with a block of contiguous memory
addresses (e.g., 0xC00-0xCFF in Figure 1) . While we cannot
be sure exactly what the boundaries between the peripherals
are, we assume there is some fixed alignment for—and the
minimal gap between—them, likely due to the underlying
details of the peripheral buses that serve MMIO peripherals.
These details are supported by the SVD data explored in Sec-
tion 2, as well as the manuals for all of the devices explored in
Section 4. We can, therefore, find our peripheral boundaries
through clustering techniques. For this work, we take the
set of accessed addresses and employ the Density-based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [11] to recover the peripheral groupings.

The intuition behind this choice is that each peripheral will
appear as a small cluster of accesses in a relatively sparse
memory space. For example, in Figure 1, while an entire page
of memory (0x1000) is allocated to the timer, only a small
portion (0x00-0x50) of that memory space is actually used,
meaning that subsequent peripherals in memory will likely
have large gaps between their relative clusters. DBSCAN
is able to quickly discern these clusters, providing us with
the capability to efficiently group the various accesses. In
our work, we set our maximum gap between any of the
addresses in a cluster (i.e., epsilon) to be 0x100 and the
minimum cluster size to be one. Almost any reasonable value
for epsilon (e.g., 0x8-0x100) would likely produce identical
and useful clusters, and our minimum cluster size of one
ensures that we will not exclude simple or infrequently-used
peripherals from our models.

3.3 Interrupt Inference

In order to model interrupts correctly, we need to establish a
reasonable approximation for when to fire each interrupt and
which MMIO event triggered it. First, we find the association
between the interrupt number and the peripheral firing the
interrupt, which is a property of the hardware that varies
widely between chip models. Then, we discern which MMIO
register is used to enable and disable each interrupt, so that
we do not fire it too soon or too late in the execution. Finally,
we determine how often to fire interrupts when they are
eventually enabled.

To associate an interrupt with a peripheral, we examine
the interleaved interrupt and MMIO traces and locate all
of the MMIO operations that occur during an Interrupt
Service Routine (ISR) (e.g., between an interrupt event
and the emulator returning from the ISR). We leverage the
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intuition that the purpose of most interrupts is to trigger the
firmware to communicate with the interrupting peripheral,
by executing the code in the ISR. Therefore, we associate an
interrupt number with a peripheral if that peripheral’s MMIO
addresses were accessed the most during the ISR’s execution.

We then locate the memory location containing the
interrupt’s trigger, which is a location in the peripheral
which, when a certain bit pattern is written, causes interrupts
to be enabled. The location can be determined by finding
the very first interrupt for a given interrupt number, and
seeking backward in the MMIO/interrupt trace until a write
to the associated peripheral is found. This is intuitively
the configuration, or interrupt-enable register, as it is best
practice to enable interrupts as the final step during peripheral
configuration, as, after this point, any operation could be
interrupted. However, this memory location may be shared
with other functions, and many bit patterns may be written
to it during an execution which have no effect on interrupts.
The next step is therefore to refine the bit pattern which can
enable interrupts in the model, based on which writes appear
to control interrupt behavior in the hardware. We start with
the assumption that all bits in the trigger location control
the interrupts. For each write to the detected trigger location,
if a bit is set to 0 when interrupts occur, it is unlikely to be
the interrupt trigger bit, and is removed from consideration.
The remaining bits are considered the final interrupt trigger;
during emulation, when these bits are set in the trigger
location, interrupt events will be fired by the model.

Finally, we must determine how often to fire interrupts
when they are enabled. There are various kinds of interrupts:
pulse interrupts occur once for every event they represent,
and level interrupts occur repeatedly until some MMIO action
disables them. While level interrupts would be easy to model
based on the state of the peripheral, we cannot reliably distin-
guish these two types in the recording data. As a result, the
most general, flexible approach is to use interrupt timings. In-
terrupts can also be very frequent. Since these are the timings
seen during PRETENDER’s recording, we can be sure that the
emulator can at least support interrupts at this speed. We col-
lect the timings between an interrupt return and the beginning
of the next interrupt (as well as between the trigger and the
first interrupt) and create a repeating sequence. As long as in-
terrupts are enabled via the correct bits in the interrupt trigger
location, they will be fired repeatedly until they are disabled.

The result is a peripheral model for which interrupts can
be enabled and disabled by the program in a realistic manner,
and with timing intervals that the emulator can support. We
find that these intuitive heuristics both align well with the
design of peripherals, and also work well in practice, as we
show in Section 4.

3.4 Memory Model Training

In this step, we select a model for each memory location in a
peripheral. We first look for common memory access patterns,
which allow us to train accurate models for these common
types of interactions. For some memory locations, where more
complex, stateful, functionality is implemented, we employ
a state approximation mechanism, able to provide known-
valid sequences of observed values for that specific memory
location, based on what state we infer the peripheral to be in.

There are a few basic types of MMIO registers common
to many peripherals (e.g., configuration registers, status
registers, and counters). By using simplified models for these,
we can allow this part of our model to maintain flexibility, and
operate as independently as possible from the circumstances
of the recording. We identify and model a number of classes
of MMIO:
• the Simple Storage Model is used for memory locations

that were observed to always act like normal memory. That
is, the value returned for a read from a location was always
identical to the most recent value written to that location;

• the Pattern Model is used for memory locations whose
read values appear to follow some repeating pattern (e.g.,
0,1,1,0,1,1,...), including locations that always return a
static value;

• the Increasing Model is used for values that are eventually
monotonically increasing (i.e., the last half of the obser-
vations were increasing), which is typically indicative of
a timer or counter;

• and the Write-only Model is used for memory locations that
were only ever observed to be written to, which are effec-
tively ignored from a modeling perspective, but interesting
for our state approximation, as they are likely configuration
registers that directly affect the state of the peripheral.
While these models are relatively straightforward, our

Increasing Model requires multiple iterations of linear
regression modeling to find the best fit line. This is because
these incrementing values are typically configured during the
boot process, which means that their initially read values are
unlikely to be indicative of the actual rate of increase. For
example, a counter may start on boot at a certain rate, then
the firmware will configure a new rate and reset the timer,
resulting in two distinct functions represented by the same
memory value. To handle this, we iteratively remove outliers
(i.e., values that have a correct p-value greater than 0.0001)
from our regression model until we have a good-fitting
function for the steady-state increase. When we are replaying
this model, we first replay the initial outlier values verbatim,
and only switch our projection function once initial values
are exhausted and the long-term behavior is expected.

State Approximation. The remainder of locations within a
peripheral represent those locations that do not follow any
easily identifiable pattern. These locations can represent
external sources of input or external physical phenomena,

USENIX Association        22nd International Symposium on Research in Attacks, Intrusions and Defenses 141



reflect large amounts of state invisible to the CPU (e.g.,
the internals of on-chip peripherals), and be related to
the behavior of interrupts. Therefore, methods relying
on function-fitting or direct recovery of a state machine
involving these memory locations simply will not suffice.

As a first step toward addressing these challenges, we in-
stead make an approximation of the device’s state, using only
the observed trace’s data and ordering, by inferring state tran-
sitions we know must exist. We observe that writes to MMIO
addresses are typically used to cause a change in state (e.g.,
the transmission of data to external hardware or a change in
the internal configuration of a peripheral), and approximate
that the activity between two writes found in an MMIO record-
ing may roughly represent the same state of the overall periph-
eral. Interrupts also represent a change in state, although we
cannot know concretely what change in state they represent.
Reading data can also change the state of a peripheral, but in a
more subtle way (e.g., reading a byte from a serial port causes
it to be removed from an internal hardware buffer, and a sub-
sequent read to the same address will return a different value).

With these intuitions in mind, our State Approximation
model consists of the trace of MMIO and interrupt activity
for a given peripheral, and a state pointer consisting of where
in the trace we believe best approximates the state of both the
program and the peripheral. At the beginning of execution, the
state points to the beginning of the trace. We update this state
based on the following rules: When an MMIO address for this
peripheral is read, we look ahead in the trace to find the next
time this location was read. If it is found, we return this value,
and update the state pointer to this location. If we encounter
a write, an interrupt, or the end of the trace before we find
one, we instead return the most recent value for that location,
and do not update the state pointer. This encodes the behavior
that values read from MMIO may be sequential (as in the
serial port buffer mentioned earlier) and that they respect the
boundaries of state caused by writes and interrupts.

When a write to the peripheral’s MMIO occurs, or the
associated interrupt event is triggered, we look forward in
the trace for the next location where the same event occurred,
and update the state pointer. If we do not find it before the
end of the trace, we instead seek backward through the trace.
If the value written is entirely new, we do not update the state
pointer. These rules allow our model to respond intelligently
to changes in its mode, or new commands, regardless of the
order they occur during execution, particularly when new
input causes deviation from the trace.3

Test Harness Creation. Finally, in order for this system to
be fully interactive, as we discuss in Section 2, the analyst
must decide how input is to be introduced into the emulated
environment. No standards exist for input and output in
embedded firmware and hardware; exactly where an input is
introduced is both a function of the target device’s hardware,

3For a walk-through of the state approximation model in action and the
challenges faced by it, see Appendix B.

and the analyst’s goals. For example, a serial port, in one
device, could be connected to a human-controlled terminal
(the obvious source of input), while in another, it could be
wired across the circuit board to a simple sensor with a serial
interface (a model-able device). PRETENDER, therefore,
requires the analyst to provide their own means of input, in
the form of a test harness. We leverage avatar2’s Python
scripting interface to allow any MMIO location to be easily
replaced by custom logic. As an example, for the firmware
presented in Section 4, we created a harness consisting of
feeding input data via the device’s serial port.

4 Evaluation

To demonstrate the efficacy of PRETENDER, we use it to
create models of the hardware in the context of multiple
firmware images. We then use these models, together
with freshly generated inputs, to uncover code paths and
orderings not seen during recording and modeling. The newly
covered parts of the firmware include synthetic security
vulnerabilities, which the system is able to trigger and detect
within the modeled environment.

Targets. We applied our system to firmware running on three
different embedded CPUs on development hardware, the ST
Nucleo L152RE, the Maxim MAX32600MBED [18] and the
STM Nucleo F072RB [24]. The targets represent ARM-based
microcontrollers common to embedded applications; the first
two represent Cortex-M3-based designs, while the latter is
based on a Cortex-M0. The layout of the peripherals, and the
function of each MMIO register varies widely, even between
the two targets from the same vendor. It is worth noting
that QEMU has no official support for any of these chips, or
any of their contained peripherals. Third-party forks contain
partial support for related chips but would have to be heavily
adapted and extended to work on these firmware samples.
Access to all devices was obtained using a commodity
CMSIS-DAP debugger. We showcase the function of our
models in-depth in the context of the STM Nucleo L152RE,
but provide results from all three.

We evaluated our technique on six example firmware: four
of these were directly obtained from the ARM mbed [25]
development suite’s library of examples. These were designed
to exercise interesting features of the hardware, and we chose
them to demonstrate the challenges PRETENDER has to
overcome for successful hardware modeling. We extended
three of these examples with additional functionality, which
we do not trigger during the recording and modeling phases.
Besides additional hardware interactions, our additions also
include synthetic security vulnerabilities, similar to the kind
that an analyst may wish to locate in a binary firmware. The
other two examples, not taken from the mbed examples, are
more complex and mimic real-world firmware found on a
door lock controller and a thermostat. All of our examples
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Table 2: Approximate basic block coverage for firmware samples
with PRETENDER, as measured by QEMU

Firmware Name Peripherals Blocks Executed

Rec. Null
Model SA Fuzzing

Nucleo L152RE
blink_led Timer, GPIO 218 86 218 n/a
read_hyperterminal Timer, GPIO, UART 545 85 545 636
i2c_master Timer, I2C, AM3215 1185 61 1185 n/a
button_interrupt Timer, GPIO, Button 344 68 314 n/a
thermostat (custom) Timer, I2C, AM3215 1263 62 1261 1276
rf_door_lock (custom) Timer, GPIO, Radio, 665 87 665 758
Nucleo F072RB
blink_led Timer, GPIO 405 117 405 n/a
read_hyperterminal Timer, GPIO, UART 828 102 828 999
i2c_master Timer, I2C, AM3215 1572 103 1572 n/a
button_interrupt Timer, GPIO, Button 362 103 362 n/a
thermostat (custom) Timer, I2C, AM3215 1662 103 1662 1918
rf_door_lock (custom) Timer, GPIO, Radio, 960 102 960 972
MAX32600MBED
blink_led Timer, GPIO 280 9 280 n/a
read_hyperterminal Timer, GPIO, UART 514 8 514 668
i2c_master Timer, I2C, AM3215 941 8 942 n/a
button_interrupt Timer, GPIO, Button 188 8 188 n/a
thermostat (custom) Timer, I2C, AM3215 1009 8 1009 1066
rf_door_lock (custom) Timer, GPIO, Radio, 692 8 692 712

were compiled using GCC 5.0, and ARM’s mbed hardware ab-
straction layer. While we had the source code available during
our analysis, it should be noted that no part of PRETENDER
leverages this information; PRETENDER operates solely on
binary firmware and the hardware itself. While this may seem
like a small number of samples in comparison to previous
approaches [3, 8], the need to obtain and instrument original
hardware necessarily limits the number of firmware samples.

We evaluated our system’s effectiveness in terms of its
achieved code coverage on each example, as measured
through execution traces from QEMU. We note that good
code coverage during our recording phase is an important fac-
tor in our modeling, as we want to explore as much of the hard-
ware’s functionality as possible. Table 2 summarizes the used
peripherals and execution behavior of each firmware. We note
that the reported block counts are approximate, particularly
for those examples with interrupts, as QEMU re-defines basic
blocks based on where an interrupt occurs and returns, leading
to imprecision. The table shows vastly different amounts of
covered basic blocks for the same firmware across different
devices, although the exact same compiler, source code, and
system library was used for all of the examples. This hints to-
ward the many subtle differences in the hardware abstraction
layer, which are required to deal with the diverse hardware
platforms. The block count in the “Rec.“ column serves for
baseline comparison and shows the coverage reached during
the initial recording phase. The “Null Model“ column repre-
sents the coverage obtained when all MMIO is replaced with
a model that simply returns a zero value for every location
(this is in contrast to not having a model at all, where all of
the firmware would cause QEMU to crash). The “SA” column
shows the coverage with complete modeling, including the
State Approximation of the firmware’s source of input. A

Table 3: Snippets from a capture of all memory-mapped input/output
(MMIO) accesses from an STM32 firmware.

(a) Increasing read-only (Timer 5
@ 0x40000C24)

Op. # Operation Value
. . .

524 READ 3690781
. . .

595 READ 3731433
. . .

658 READ 3534604
662 READ 5549086
663 READ 6053877
665 READ 7060952

(b) Read/write storage (Flash
controller configuration @
0x40023C00)

Op. # Operation Value
. . .

14 READ 0
15 WRITE 4
16 READ 4
17 WRITE 6

. . .
77 READ 6
78 WRITE 7
79 READ 7

firmware that is entirely input-driven will have finite behavior
when the source of input is modeled, but unlike previous ap-
proaches, the firmware will continue to execute after the input
ends, but with no additional input-triggered behavior. We man-
ually verified that all of the firmware samples performed the
same overall behavior as was present during recording. That
is, even when no hardware was present, the firmware used our
generated models to function similarly to when it was running
on the actual hardware. In the last column, Fuzzing, we feed
automatically generated random data to the three firmware
examples whose execution is data-dependent, which is equiv-
alent to a naïve fuzzing approach. We accomplished this by
attaching a test harness in place of a serial port controller to
the system, which, instead of supplying modeled data, pro-
vides IO from the host system. This allows new input to be
supplied to the firmware program for exploring new function-
ality, while letting the rest of the PRETENDER-created models
function normally. As the table shows, PRETENDER success-
fully discovered new blocks, and, subsequently, revealed new
functionality of the firmware. In all cases, this extra functional-
ity actively interacted with the other peripherals models, such
as timers and system configuration, not just the serial port.
While we discuss details of the hardware peripherals when
commenting on PRETENDER‘s behavior, our system is not
aware of the specific layout, names, or functionality of any of
the peripherals, aside from the test harness, and basic details
of the standardized interrupt controller coupled to the CPU.

Our evaluation demonstrates that PRETENDER is able
to successfully allow re-hosting, while enabling survivable
execution at the same time. As a result, analysis techniques
such as fuzzing could be parallelized and scaled. Rather than
simple random data, smarter fuzzing techniques [6] could be
used; however, we would like to emphasize that the goal in
this work is not specifically to find new bugs in firmware via
fuzzing, but to enable dynamic analysis, which is necessary
to achieve this, and other security goals going forward.

In the remainder of this section, we will describe the hard-
ware platform and each example more in-depth, together with
the detailed re-hosting capabilities enabled by PRETENDER.
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blink_led. This simple example blinks a Light Emitting
Diode (LED) every 0.5 seconds. While this example may
seem overly trivial, we use it to illustrate the basic level of
complexity inherent in any firmware compiled with ARM
mbed, and the basic behavior of timers. When booting even
the simplest firmware, the board performs a number of
initialization tasks, including using the Reset and Clock Con-
trol (RCC) to enable various clock devices, the management
of the on-board flash controller, and the configuration of
GPIO pins. The firmware performs various self-checks on
these peripherals during boot, and if they fail to report correct
status information, the firmware will hang in an infinite loop.
While this can also be solved with simple replay, the ability
to execute this firmware indefinitely can only be achieved
using modeling. Table 3 shows a memory trace acquired by
PRETENDER, and shows interactions with the timer (Table 3a)
and the flash memory controller (Table 3b). PRETENDER
correctly identified the timer as an Increasing Model, and
our linear regression approach correctly resolved the rate at
which the timer increases. Whenever wait() is called, the
value of the timer is periodically checked and the firmware
continues execution only when it exceeds an ever increasing
amount. PRETENDER’s model can correctly produce the
required values indefinitely. Furthermore, the various RCC
and other system configuration registers checked by the timer
and GPIO code continue to produce the correct values, as
we correctly deduced their simplified storage, pattern, and
state-approximated values.

read_hyperterminal. This firmware receives external input
from a user or other device over a serial port, and turns an
LED on or off (“1” or “0”) based on the input. This example
shows diverging firmware execution based on different inputs,
as a user can send various possible inputs, in any order.
We stimulated the program by sending random “on” and
“off” commands over the serial port for the duration of the
recording. During our State Approximation-based execution,
we were able to identically reproduce the execution. After
the recorded input ends, the firmware continued to execute,
waiting for more data from the serial port. To make things
more interesting, we added a special backdoor to the firmware
code. More precisely, if a “2” is sent, the firmware will
prompt for a password, a common behavior for a hidden
backdoor functionality. This functionality is also vulnerable
to a buffer overflow when reading the password. In order to
explore code-paths of the program not seen during recording,
we use the serial port test harness described above, and
provide random bytes as input. Even though this backdoor
was not exercised during our recording, PRETENDER was
able to successfully rehost the firmware accurately enough so
that our emulated version can handle this input, including the
various timer and RCC interactions present in this section of
code. When fuzzing the rehosted firmware, we were also able
to trigger the implanted buffer overflow, leading to corruption
of the program counter, and crashing the emulator.

button_interrupt. This example makes use of interrupts that
are triggered by an external event (i.e., a physical button).
When the physical button is pressed, it causes an interrupt to
execute a callback that blinks an LED. During our recording,
we pressed this button at random intervals over a period
of two minutes. Our recording functionality receives the
interrupt events and forwards them to the emulator, which
in turn executed a callback that manipulated the GPIO
peripheral. We located the trigger for the GPIO interrupt
automatically (0x40010408 with value 0x002000). However,
as the timings for the individual button presses were random,
PRETENDER falls back to State Approximation for this
peripheral, still allowing indefinite execution.

i2c_master. This example is modified from the original
ARM mbed example to support an AM2315 I2C temperature
sensor, and reports both the temperature and humidity in
the room. Unlike the previous examples, this one contains
multiple sources of interrupts; both the primary system timer
(TIM5) and the I2C bus produce interrupts, which causes
a conflict during recording. For this reason, we utilize the
iterative modeling approach described in Section 3. On
the first execution, we obtain a recording of the timer’s
overflow-related interrupts, and convert this into a model.
On the second execution, PRETENDER identifies that we
have an interrupt-enabled model of the timer already, and
uses it instead of the hardware. With this source of interrupts
removed from the hardware, we are able to clearly observe the
I2C bus’s interrupt patterns. This peripheral has multiple bits
that control interrupts, and through observing the peripheral,
we are able to locate the correct bit mask for the configuration
register (0x720), such that these bits being enabled will cause
our timing-based interrupts to occur. While this bus is a
source of external input like our serial port, the input is only
generated in response to an action by the firmware. Therefore,
when the firmware writes the configuration and data registers
for the I2C bus with the appropriate values to read from the
temperature sensor, the state of the peripheral will advance
or rewind to the appropriate time that this action occurred
during recording and the events will occur as expected.

Thermostat. In this example, we present a firmware that
would drive a typical thermostat, indicative of popular smart
thermostats (e.g., Google’s Nest). The firmware reads the
temperature and humidity from the AM2315 sensor used
above, but now it also accepts commands that poll for the
temperature and humidity. If the temperature is too far
from a preset temperature, it will enable a GPIO to trigger
a hypothetical air conditioning unit. However, in order to
showcase that peripheral models generated with PRETENDER
are not firmware-specific and can easily be transferred and
reused, we did not actually leverage a recorded peripheral
trace to build the models for this firmware.4 Instead, we reuse

4Note that we obtained a recording of the firmware’s execution
nevertheless to provide coverage information for comparison.
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the models from the i2c_master example above, together
with our test harness to uncover new functionality offered by
the firmware. However, when we fuzzed the firmware using
our test harness, we were able to discover this previously
un-reached functionality, which directly results into an
increased coverage as shown in Table 2.

Rf_door_lock. This firmware uses a Grove Serial RF Pro
radio module connected to an Universal Asynchronous
Receiver/Transmitter (UART) peripheral, which accepts
multiple commands. Among others, those commands
include “ping” and “unlock,” which accept a password. If the
password is correct, the firmware activates a GPIO, which
unlocks a hypothetical mechanical lock. The functionality
of this firmware is indicative of those on popular IoT smart
locks. The radio module operates over a standard serial port.
It can be configured using various commands, and once
this is complete, it will simply transmit data received on the
configured channel to nearby radios. Similar to many small
embedded systems, this firmware provides a binary protocol
we can use to send commands via our hypothetical smart lock
client, including unlock (0xbb) and ping (0xdd). To interact
with this firmware during recording, we used another radio
device to send random valid and invalid lock codes and pings
to the firmware. This firmware has an additional functionality,
implemented as a backdoor that allows any radio user to
overwrite the lock code, by sending command 0xff, followed
by the desired code; this feature is also vulnerable to a buffer
overflow. As our radio uses a normal serial port, State Ap-
proximation works as expected here, but we cannot directly
apply our serial port model and feed it with random data to
reach additional block coverage. Instead, we need to correctly
format our inputs according to the format observed by the
radio’s responses during recording; it checks that the radio
responds correctly with “OK” to configuration commands,
and will halt execution if it does not. This would be an
excellent starting point for a mutational fuzzer, but for the
sake of simplicity, we simply “mutate” by appending random
data to the end of the data held in our model, and replaying
it into our serial port. With this rudimentary fuzzer, we were
able to automatically discover the hidden functionality, and
even trigger the bug, causing QEMU to halt the execution.

5 Discussion and Future Work

We have shown that a virtual, interactive, and automatic
re-hosting solution is necessary to tackle the diversity in
IoT and embedded devices, and demonstrated the possibility
of such a system through PRETENDER. However, we fully
acknowledge that the problem of automated re-hosting is still
challenging to be completely solved. This section discusses
the assumptions and prerequisites laid out in Section 3, and
explores a number of the open problems and challenges that
must be overcome in order to apply re-hosting in any context

to production embedded devices.

Beyond ARM and MMIO. Currently, PRETENDER supports
ARM devices, for which an emulator for the instruction set
and any core peripherals (those which control code execution
directly) are available. This is a reasonable requirement, as
newer ARM designs, particularly the Cortex series, have
provided more rigid standards to manufacturers governing
memory layout and core components, such as the interrupt
controller. This still leaves vendors ample room to customize
every aspect of the remaining peripherals, however. While
we focus on the ARM architecture, additional architectures
can be added by providing a basic instruction set emulator,
creating the short interrupt recording stub, and providing
the needed physical memory access to the device to enable
recording. Additionally, other architectures use “port-mapped
IO” (PMIO) to perform their IO operations. While we do not
support this today, PRETENDER could be trivially extended
to record these operations instead. All other features of
PRETENDER are completely device and architecture-agnostic.

Performance. As PRETENDER involves sending peripheral
data and interrupts back and forth between the device and an
emulator, this adds some overhead to the firmware’s execution.
This is particularly noticeable with interrupts, as they tend to
be performance- and timing-critical, which could cause issues
during recording. This could be overcome through optimiza-
tion of the implementation, or through the use of purpose-built
hardware to interface with the device, as demonstrated in [7].

Obtaining Traces. The principal limitation on the applicabil-
ity of PRETENDER is not the models or modeling techniques,
but in fact the ability to obtain the data to generate them. First,
we must be able to obtain a memory data trace for MMIO. In
our case study, this is provided via the chip’s debug interface,
which simply provides access to read and write to any
memory address or CPU register. Any interface that also pro-
vides this functionality, whether it is an intended debugging
interface or one adversarially obtained through an exploit,
is sufficient, and could be used to also extract interrupt traces
using only this basic requirement. Second, we must be able
to observe enough hardware functionality to generate a useful
model. This means that we require sufficient code coverage
of those code paths that interface with the hardware. We can
explore new program behavior using PRETENDER models,
but will logically encounter incorrect behavior if these new
code paths exercise dramatically different functionality than
what has been recorded. For example, we can re-use our timer
model on a completely new firmware that also configures the
timer in the same way (e.g., to count up), but not one with
a different configuration with vastly different behavior. In
our case studies, we utilize human and automated stimulation
to achieve maximal coverage during recording, but of course,
in the general case, this is an open problem.

Additionally, there are a few aspects of many chips that we
simply cannot model correctly with this visibility, particularly
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Direct Memory Access (DMA) controllers, whose accesses
to memory are initiated by the hardware itself, and therefore
not visible externally by any conventional means. These are
particularly common in higher-speed peripherals, including
USB, networking, storage buses, and those common to
modern CPUs designed for general-purpose computing. We
are unaware of any CPU that allows introspection into DMA
activity; however, insight into this problem may be gained
by instead observing the firmware’s code to locate DMA
operations.

External Peripherals. External peripherals remain one of
the most complex parts of re-hosting firmware. PRETENDER
handles external peripherals, such as the I2C temperature
sensor, and RF hardware examples, but does so by modeling
the on-chip peripheral and its associated external device
as a composite. This makes our models specific to a given
physical hardware configuration. Ideally, this would not be
the case; for example, a common serial port can be thought of
a simple bi-directional channel over which the CPU and the
external device communicate, and we could develop models
for each external serial-based peripheral using this channel
alone, and reuse these on different host CPUs. However, these
ports and bus controllers have their own internal hardware,
which follows its own state machine, that responds to the
data transferred to and from the peripheral. A particular
complication is that, from the point-of-view of MMIO, it is
impossible to reliably distinguish values read from control
or configuration registers from data coming from outside the
CPU. Separating these two intertwined systems remains an
important, open problem.

Heavily-stateful Peripherals. Not all peripherals, particu-
larly external ones, are well-modeled by a state machine. As
we discussed in Section 3, we make some assumptions to
build a state machine approximation of devices which require
it, but this is by no means guaranteed to be correct. One
notable case where this will fail is external storage devices,
such as SPI-based flash or EEPROM chips. While we could
reconstruct much of the traffic to and from these chips seen
during recording, reading and writing arbitrary data, as could
be possible through a modeled serial port used to provide
arbitrary input, will of course not succeed. Fortunately, this
problem may be dramatically simplified through high-level
modeling, or through the separation of external peripherals
from their corresponding internal peripherals, as the behavior
of a device as storage may become more apparent.

Adding Abstractions. While a system that is abstraction-less
is the most ideal solution to the re-hosting problem, modeling
using a higher-level abstraction, such as libraries or an
OS, remains an important way to make re-hosting more
robust. Many firmware images, including the ones used in
this work, were written with such libraries, which perform
most hardware interactions on behalf of the author’s code.
If located, these would also provide a convenient means of

dealing with the above problem of external peripherals and
DMA, as they provide the firmware author a high-level way of
communicating with peripherals, which can then be exploited
for modeling. However, for firmware without an operating
system, which is typically distributed as a binary blob, this
reduces to the problem of identifying library functions in
statically-compiled, stripped binary programs, a well-studied
but yet-unsolved problem. Furthermore, any code which
violates the abstraction by controlling hardware directly still
requires the use of a technique like PRETENDER. This is
found even in our simple examples, where all accesses to the
GPIO peripheral were aggressively in-lined by the compiler,
such that no library call or other abstraction remained.

6 Conclusion

In this work, we explored the area of firmware re-hosting, and
showed that an entirely new class of approaches can enable
scalable, thorough program analysis of firmware. As a first
step toward achieving this goal, we presented PRETENDER,
which generates models of peripherals automatically from
recordings of the original hardware. We demonstrated the
accuracy and interactivity of these models, by evaluating
PRETENDER on multiple firmware samples across different
hardware platforms. While there are many open problems
remaining before this technique can be generally applicable,
we believe this work shows that automated re-hosting is both
possible and necessary to ensure that increasingly-important
firmware does not go un-analyzed.
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Appendices

A Recording Rationale

While we describe our means of recording in Section 3.1, our
approach may seem overly complicated. In the following, we
point out the rationale behind the design decisions for the
recording subcomponent of PRETENDER.

Recording MMIO. The natural first step in building models
of hardware is recording a trace of the IO activity that
occurred during execution. As we outline in Section 2, the
firmware depends on both internal “on-chip” peripherals, and
external “off-chip” peripherals, both of which are needed for
the firmware to operate as expected. However, the firmware
only communicates with off-chip peripherals through its
interactions with on-chip peripherals, so in order to have a
complete recording, we must capture all memory accesses
that constitute MMIO.

Peripherals are considered “memory-mapped” because
they are attached to, and addressed via, one of the CPU’s
internal memory buses. Unlike external buses, which can
be physically probed and monitored, these interactions only
occur within the CPU’s die, and cannot be directly monitored.
While some debugging facilities used in the development of
new chips offer a data trace of the memory bus, such as ARM’s
ETM/HTM Data Trace, these features are seldom available on
production chips, and are entirely absent in the low-cost, low-
pin-count chips of commercial embedded devices. Typical
CPUs found in the wild include, at best, a debugger capable
of simple execution control, and memory/register access.

On top of this, MMIO behaves differently from a normal
region of memory; instead of just storing data, these locations
instead control or represent aspects of on-chip peripherals.
Their value or function may change based on external factors,
without any interaction with the firmware.

One possible alternative approach to MMIO recording
would be to instrument the firmware to record IO interactions.
This requires us to understand, from the binary firmware
itself, where this IO takes place. This could be done on
architectures where explicit in and out instructions are used
for peripherals. On ARM, however, this is not a straight-
forward operation, as peripherals are accessed via normal
memory handling instructions (LDR/STR), and it is often

difficult to tell statically whether an instruction is addressing
a peripheral or normal memory. Inserting this instrumentation
code non-destructively, and collecting the cumbersome
volumes of data it generates, are both hard problems, and
may even be impossible if the code is present on a Read-Only
Memory (ROM). As a result of these complications, our
approach involves virtually extending the internal memory
bus of the device, by emulating the firmware, and forwarding
and recording only the hardware-related accesses to the
original physical device (as detailed in Section 3).

Recording Interrupts. Interrupts play an important role in
most peripherals, and are a particularly difficult aspect to
record and model correctly. Interrupts are triggered by some
event, whether it is an explicit MMIO operation, or an event
in the physical world, and cause the execution of Interrupt Ser-
vice Routines (ISRs) as a result. These ISRs typically contain
MMIO operations associated with the peripheral that triggered
the interrupt (e.g., reading data that arrives at a serial port or
counting the number of times a counter overflows). Without
the peripherals’ ISRs executing at the correct times, the periph-
erals may not function, or the system may crash. This behavior
is a property of the hardware itself; the internal logic of the pe-
ripheral decides when and how often to trigger its associated
interrupts. Many peripherals allow this behavior to be adjusted
at runtime, through their configuration registers. For example,
many peripherals have a single bit in their configuration reg-
ister controlling whether interrupt events are generated at all.

Hardware features exist on many chips for providing a
log of the interrupts, such as ARM’s Instrumentation Trace
Macrocell (ITM), but these features are not universal, and
are difficult to coordinate with simultaneous peripheral
recording or even basic hardware-in-the-loop emulation.
Hence, previous solutions, such as the first version of the
Avatar framework [26] or SURROGATES [16] tried to tackle
interrupt forwarding with custom stubs injected onto the
device under analysis. However, both of these solutions
forward interrupts in a “fire-and-forget” manner. This results
in inconsistencies between hardware and emulated firmware,
as incoming interrupts on the hardware could easily be missed
when the emulator serves a previous interrupt. Although those
inconsistencies are a negligible problem for manual analysis,
they dramatically complicate automated modeling, and must
be avoided. A more recent approach, presented by Corteggiani
et al. [7], uses a custom tailored protocol to keep hardware
and emulator synchronized during interrupt forwarding. Un-
fortunately, this method requires custom debugging hardware
that would greatly reduce the generality of PRETENDER.

Hence, we heavily extended avatar2 to support the notion
of forwarding and recording interrupts, while carefully
keeping the two systems synchronized without the need of spe-
cialized debugging hardware. The current published version
of avatar2 retains the hardware in a “debug-halt” state while
forwarding memory accesses, in order to avoid side-effects
from the resident code. Unfortunately, this debug-halt state
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inhibits all interrupts, and thus cannot be used as-is. However,
we cannot simply keep the CPU running and forward all of the
generated interrupts into the emulator; if too many un-handled
interrupts arrive, or spurious, unwanted interrupts occur, the
hardware or emulator can experience an unrecoverable fault.
The current version of avatar2 also does not support writing
to memory while the CPU is running. To make matters worse,
halting the CPU during interrupt routines is problematic,
as we noticed that some peripherals, particularly those that
control future interrupts, will not work properly in this
halted state because they are bound to the CPU’s instruction
pipeline. As a final complication, we must ensure that we
return from these interrupts properly, both in the emulator
and on the hardware to ensure that the hardware continues
to function, even though it is not executing any code.

B State Approximation Details

Our state approximation model is used when a MMIO
location does not fit any other model. According to our obser-
vations, these tend to be the locations in a peripheral directly
affected by external events, such as the data register of a
serial port, a bus controller, or a status and event flag register.

These locations are the most challenging to model and em-
ulate. For example, in the case of an I2C bus controller, there
are many sources of state, and numerous causes for the state
to change, many of which are not observable. From the soft-
ware’s perspective, the I2C bus controller presents an MMIO
interface, which specifies how the bus protocol is spoken
(baud rate, master/slave), whether queuing is enabled or in-
terrupt are fired, and so on. At another layer, the hardware be-
tween the MMIO and the pins has a state, containing the data
queue, bus-related timers, and other condition flags not visible
directly through MMIO. Both of these portions also occur in
the device on the other side of the bus. Finally, the two devices
share a protocol spoken on the I2C bus itself, which specifies
an ordering of events (start symbol, address, data with ac-
knowledgment, etc.). The result of this is a series of composed,
inter-related state machines, which also rely somewhat on the
physical world’s events, and can only be observed through
the rather limited window of MMIO memory accesses.

Unfortunately, this means that we fail the requirements of
state machine recovery techniques, which are typically used
to infer states and transitions from an activity trace. We do not
know the number of possible states, we cannot tell when two
states are equivalent, and it is challenging to know concretely
if we have even changed the state of the peripheral. We also
cannot easily distinguish data registers, which may contain
data respecting some protocol, from others containing status
flags, error codes, and configuration data. However, it is
also not sufficient to simply replay values verbatim from the
recorded trace. This is because our models need to be able to
function even when we observe deviation from the recording
caused by new input, timing-related deviations caused by

differences between the hardware and emulator, as well as to
tolerate the asynchronous and non-deterministic occurrence
of interrupts. In avoiding these limitations, we created the
State Approximation algorithm we describe in Section 3.

State Approximation Example. As an example, consider a
hypothetical device that uses a serial port to act as a client
for the thermostat we model in Section 4. This device’s
firmware will query the thermostat, with ‘t’ and ‘h’, and
expect a properly formatted temperature or humidity in return.
Furthermore, the firmware reacts to this data, for instance
by sending the information across a network, or raising an
alarm. The device firmware must receive a response from the
thermostat when expected, and the response must make sense
for the given command, for the firmware to behave correctly.

An illustration of what this model might look like can be
seen in Figure B.1. Note that, in a real-world scenario, there
will be many peripherals needed to operate the firmware,
but here we focus on just one to better explain its behavior.
The client device’s serial controller contains many registers,
including a configuration register, a status register, a data reg-
ister, as well as assorted registers governing physical hardware
details, like baud rate. Each of these is addressed by its own
MMIO location, in a contiguous memory region we identified
during clustering. We notice, from our traces and previous
Memory Model Training, that the configuration register is
a simple storage location, and the baud rate control register
is only ever written to. The contents of the status register
follow a pattern, alternating between the values 0x1 and 0x3,
which we will interpret as whether data is ready to receive or
not. The data register, on the other hand, will change without
respecting any pattern or direct stimulation from the firmware.
Therefore, this location is handled by State Approximation.

When emulation begins, we start in the peripheral’s initial
state; during boot-up, the firmware configures the serial port,
writing to the configuration register to enable the serial port,
and set the baud rate to 9600, advancing the peripheral’s
state pointer to the point at which these actions occurred.
The firmware then begins its main loop, and requests a
temperature, by writing a ‘t’ into the data register. Naturally,
the next thing that happens chronologically is for the status
register to indicate that bytes are ready to read, and the
firmware will read a temperature value out of the data register
one byte at a time (e.g., “24.24C”). Similar actions occur if an
‘h’ is written to the data register by the firmware; the status
register indicates new data, and the firmware reads it back
(e.g., “50.35%”). However, when emulating with new input,
interrupts, or after the duration of the original peripheral’s
chronologically observed states, we must make a decision
about what state the peripheral is in. In these cases, following
the simple rules in Section 3, we will enter the state where
a ‘t’ or an ‘h’ was written to the data register, and subsequent
reads will return a temperature or a humidity. In this simple
example, the serial port will, after some time, return only the
last valid temperature and humidity values, but it will continue
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0x0 (CONFIG): Storage

0x4 (BAUD): Write-only

0x8 (STATUS): Pattern Model

0xC (DATA): State Approx.

...

...

Serial Port MMIO Layout Recorded MMIO Trace

READ 0x0 0x4000

WRITE 0x0 0x4040

WRITE 0x4 9600

READ 0x8 0x1

READ 0x8 0x3

WRITE 0xC 0x74 (‘t’)

READ 0x8 0x1

READ 0x8 0x3

READ 0xC 0x32 (‘2’)

... ... ...

READ 0x8 0x3

READ 0xC 0x43 (‘C’)

READ 0x8 0x1

WRITE 0xC 0x68 (‘h’)

READ 0x8 0x3 

READ 0xC 0x35 (‘5’)

... ... ...

READ 0x8 0x3

READ 0xC 0x35 (‘%’)

... ... ...

Response: “2.24C”

Response: “50.35%”

Action       Address  Value

WRITE 0x0 0x4040

Example State Transitions

READ 0x8

READ 0xC

WRITE 0xC 0x74

READ 0xCCommand: ‘t’

Command: ‘h’

Figure B.1: Illustration of State Approximation in action, on a simplified serial port peripheral

to return only temperatures or humidities when asked for, and
respect whatever formatting or encoding for these responses

the thermostat uses, which may be checked by the firmware.
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