
SmartProbe: a Bottleneck Capacity Estimation Tool
for Smartphones

Francesco Disperati∗, Dario Grassini∗, Enrico Gregori†, Alessandro Improta†,
Luciano Lenzini∗, Davide Pellegrino∗, Nilo Redini∗

∗Information Engineering Department, University of Pisa, Pisa, Italy

l.lenzini@iet.unipi.it

{f.disperati — d.grassini — d.pellegrino — n.redini}@studenti.unipi.it
†Institute of Informatics and Telematics, Italian National Research Council, Pisa, Italy

{alessandro.improta — enrico.gregori}@iit.cnr.it

Abstract—The recent development of Internet cellular and
wireless networks led several mobile phone manufacturers to
create smartphones able to connect to the Internet anytime-
anywhere. Despite the growing dependency of mobile phones
from the Internet, very little efforts have been done to measure
wireless network performances from smartphones. In this paper,
we introduce SmartProbe, a tool dedicated to smartphones able to
discover the bottleneck link capacity between two hosts. This tool
is based on the technique proposed in PBProbe, but uses a lower
amount of resources, making it appealing to the smartphone
environment, where the battery consumption and costs are topics
of extreme importance. Thanks to the capability of smartphones
to understand the type of network where they are connected
and to the technique exploited to choose the correct size of the
probing packet train, Smartprobe is able to save on average more
than 80% of data if compared to the original technique depicted
in PBProbe, still maintaining a comparable precision.

Keywords-Capacity Estimation, Internet, Smartphones

I. INTRODUCTION

The first model of mobile phone was developed in the

far 1973 by Martin Cooper. Since then, the mobile phones

slowly entered in the life of everyone, especially during

the last years thanks to the production of innovative mass-

directed smartphones. The main reason of the large success

of smartphones is due to the development of new high-speed

access networks by mobile phone operators that allowed them

to access the Internet services, such as world wide web

and e-mail and, as consequence, allowed the mobile users

to be connected anytime-anywhere. This represented a huge

improvement in the mobile phone evolution and gave birth

to a whole new set of economic opportunities for service

developers that, in these days, are experiencing the same boom

of work requests experienced during the late 1990s-early 2000s

by web developers. The linkage between smartphones and

Internet is tightening even more as time advances. The quality

of the Internet connection used by the smartphone has thus

gained a fundamental role in the quality of the services offered

by the smartphone itself. Nowadays a smartphone is typically

connected to the Internet via Wi-Fi 802.11 a/b/g/n whenever

an access point is available (e.g. at home or workplaces), or via

2G/3G/4G connections offered by mobile telecommunication

companies. Nevertheless, the number of user-available appli-

cations developed to check the quality of Internet connection

from smartphones is very small, and often it is not clear how

data is collected. In this paper we exploit the large amount of

literature available on the analysis of the link characteristics

both in wired and wireless environments in order to create an

innovative tool for smartphones, named SmartProbe, which

allows users to understand the effective quality of service that

they are experiencing with each other or with their service

providers. To achieve that, we propose a tool able to estimate

the bottleneck capacity – that in this paper is considered

to be the maximum achievable throughput of the narrowest

link of the probed path [1] – between two end users. To do

that, we enhanced the packet train based tool PBProbe [2],

minimizing the amount of data sent and, consequently, the

energy consumption of the smartphones. The techniques that

we devised lead to a considerable amount of data saved in

comparison with PBProbe, reaching peaks of 96% in the case

of 3G networks and peaks of about 89% in Wi-Fi networks.

The paper is organized as follows. Sect. II provides an

overview of the tools available in literature. Sect. III briefly

describes the techniques introduced by PBProbe and highlights

the reasons that makes PBProbe unusable on smartphones.

Sect. IV describes SmartProbe, with particular regards to the

techniques aimed to minimize its costs. Sect. V analyzes

its performances and compares the costs of PBProbe and

SmartProbe. Finally, Sect. VI concludes the paper.

II. RELATED WORK

The first tool focusing on the discovery of the bottleneck

capacity of Internet links was developed by Van Jacobson in

1997. Since then, a plethora of tools have been developed for

wired networks, typically based on packet pairs (e.g. Bprobe
[3], Pathrate [4], CapProbe [5] and TOPP [6]) and packet

trains (e.g. PBProbe [2] and Cprobe [3]). Since these tools are

not conceived for wireless environments, their inferences can

be inaccurate. Recently, some dedicated tools based on packet

pairs have been developed to infer the bottleneck capacity of a

wireless link (e.g. WBest [7] and AdHoc-Probe [8]), but suffer

heavily of compression and expansion phenomena experienced

by the packet pairs that are caused by media access control and

contending traffic [9] and by Interrupt Coalescence phenomena

[10]. Packet train tools are able to minimize the effects of the

2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber,

Physical and Social Computing

978-0-7695-5046-6/13 $26.00 © 2013 IEEE

DOI 10.1109/GreenCom-iThings-CPSCom.2013.371

1980



Interrupt Coalescence, but they still suffer of contending traffic

interferences. Among all these techniques only PBProbe was

claimed to work fine on wireless networks [2]. Nevertheless,

it is not possible to use it as it is on smartphone environments

due to the excessive required data and, consequently, due to the

excessive resource consumption. To the best of our knowledge,

this work is one of the first efforts towards adapting the well-

known bottleneck link capacity discovery techniques to work

efficiently on smartphones. The only tools for smartphones

implemented so far are dedicated to the discovery of the bulk

transfer capacity [11], i.e. the amount of data that can be sent

between two ends via TCP, that is something different from

the bottleneck capacity [1].

III. TOWARDS A SMARTPHONE-DEDICATED CAPACITY

ESTIMATION TOOL

PBProbe [2] is one of the first capacity estimation

techniques based on packet trains instead of relying on packet

pairs, which were exploited in the past by a large set of

tools such as Pathrate [12] and CapProbe [5]. The rationale

behind this choice relies on the inaccuracies that packet pair

techniques suffer in presence of high speed links [2] and the

Interrupt Coalescence [10]. This because they estimate the

capacity as C = P
T , where P is the size of the packet and

T is the dispersion among the pair of packets sent. In high

speed networks, C is large, P is limited by the MTU value

of the link and, as consequence, T gets very small. This

leads to time resolutions problems on the hosts. For example,

to correctly compute the capacity of a bottleneck link in a

common 1 Gbps network, T � 110μs. In presence of the

Interrupt Coalescence – a technique often used to limit the

system overhead introduced by the interrupt rate generated by

the Network Interface Cards (NICs) in receiving packets in

high speed networks – T is compressed due to data buffering

on the NIC, and the resulting C can be misleading. Given

these problems, it is easy to understand that the estimation

process of tools based on packet pairs is also very sensitive

to external noises introduced either by cross-traffic and by

the process scheduler of the host. These problems are solved

by enlarging the numerator of previous equation by sending

a larger amount of data from source to destination. Since the

MTU cannot be enlarged indefinitely, the only possibility is

to send a larger number of packets. Note that it has been

proved that using packets as large as possible reduces the

effect of queueing delay noise and of timestamp resolution

at the receiver side [12]. The capacity can thus be computed as:

C =
kP

D
(1)

where k is the size of the train and D is the dispersion

between the first and last packet of the train. Note that we

consider that k+1 packets are sent back-to-back from source

to destination when a train length is equal to k in order to not

cause confusion between this work and PBProbe [2].

Another key feature of PBProbe is the usage of the delay
sum – firstly introduced in CapProbe [5] – to minimize the

under- and over-estimations due to queue delays caused by

Fig. 1: Delay sum components

cross-traffic. As shown in Fig. 1, the delay sum Si is computed

as the sum of the delays experienced by the first and the last

packet and is computed for each train i. Thus, in a campaign of

n trains, the minimum delay sum identifies the train m which

has experienced less queue delay effects. Once identified

the best train in a campaign, the capacity is computed with

equation 1 using the dispersion Dm experienced by train m.

PBProbe was originally conceived to estimate the bottle-

neck capacity of high-speed wired networks, but it was also

proved to correctly infer the bottleneck capacity in wireless

environments [2]. The main problem that do not allow a direct

application of PBProbe on mobile phones concerns with its

resource consumption. To obtain a valid result, PBProbe uses

n = 200 trains composed each by k packets of 1,500 bytes.

The larger the value of k is, the larger is also the dispersion

time D experienced between the arrival of the first and last

packet of each train and, as a consequence, the smaller is

also the impact of potential interference phenomena caused

by the Interrupt Coalescence [10] and by timer resolution

limitations. To identify the correct value of k, a dynamic

algorithm which compares the dispersion time D experienced

with a threshold value Dthresh (this value depends on the

system timer resolution) is applied. In detail, if any of the

trains experience D ≤ Dthresh, then the train length k is

increased by ten-fold and the computation starts again from

scratch. If we consider Dthresh = 1ms as a good threshold

value to limit the impact of system interferences, as assumed in

[2], this means that PBProbe would require about two thousand

packets, i.e. about 3MB of data, to compute correctly the

capacity of a common 802.11g wireless network. These values

increase tenfold if we consider Dthresh = 10ms, which is a

Network Nominal Capacity Dispersion (ms)
type (Mbps) k = 1 k = 10 k = 100

WiFi 802.11
b 11 1.09 10.91 109.09

a,g 54 0.22 2.22 22.22
n 450 0.03 0.27 2.67

Mobile 2G GPRS 0.171 70.18 701.75 7,017.54
EDGE 0.473 25.37 253.7 2,537

Mobile 3G UMTS 1.8 6.67 66.67 666.67
HSPA 14.4 0.83 8.33 83.33

Mobile 4G LTE 326.4 0.04 0.37 3.68

Table I: Minimum train length set by PBProbe algorithm

1981



more realistic value for devices with bounded resources like

smartphones. In this case, PBProbe would require more than

twenty thousand packets, i.e. about 30MB of data. In Table I

are listed the dispersion values that would be experienced by

PBProbe with a variable value of k on wireless and mobile

networks, computed by considering the nominal capacity

values of each network. Note that the minimum number of

packets required by PBProbe to correctly infer the bottleneck

capacity of mobile networks (Dthresh = 10ms) is between

about 300KB and 300MB of data. This often represents a

technical issue, since a high amount of transferred data is

likely to conduct to a significant amount of consumed energy

of the mobile devices and, depending on the commercial

agreement between user and mobile operator, also to high

economic costs.

IV. SMARTPROBE: PBPROBE OVER SMARTPHONES

The excessive energy consumption and the potential costs

for users are the main reasons that made us to develop

SmartProbe, an enhanced version of PBProbe dedicated to

smartphones and tailored on wireless and mobile networks.

Differently from PBProbe, SmartProbe takes heavily into

account the limits of the common smartphones and infers the

capacity of the bottleneck link by using only a small amount

of data and limiting the impact of the tool on the performances

perceived by the users. In this section we provide a brief

description of the tool and of its protocol, and we analyze in

detail the enhancements applied to the original tool in order

to better fit in the smartphone environment.

A. Protocol overview

The SmartProbe protocol (Fig. 2) is similar to PBProbe

and is composed by two symmetrical phases in which the

downlink and the uplink bottleneck capacities for each host

are respectively estimated. Initially, one of the two hosts is

considered as the Estimator (E) – i.e. the host which asks

for packets and computes the capacity estimation – while

the other is considered to be the Prober (P), i.e. the host

that waits for requests and effectively send packet trains. The

two phases consist in an UDP handshake between Prober and

Estimator to synchronize and initialize the two hosts, followed

by the effective transmission of the train of UDP packets. In

detail, the Estimator starts the handshake by sending a START
message to the Prober, that replies with an ACK message, com-

municating its effective presence to the Estimator. After that,

each host calculates the minimum value k required by each

host to compute a value of capacity without being affected by

system interferences, as will be introduced in Section IV-B.

Then, the smaller among the two values is chosen for the

experiment, since the slower link should introduce a delay

large enough for the smartphone connected on the faster link to

compute a correct capacity value. Then, the Estimator proceeds

to start the measurement campaign by sending a RTS (Request

To Send) UDP message, which triggers the dispatch of a UDP

train. Note that the RTS message contains the number of

packets k that the Prober has to use in each train, and that

the dispatch of every UDP control message also set a timeout

���

���

���

� �

��	��

�
��
�

���



�
��
�
���
���

	��
�
�������

���������

�����

�
��
�

Fig. 2: SmartProbe protocol

which allows the hosts to not stale in case of packet losses.

Once the Estimator receives correctly all the packets of a train,

then it computes the relative delay sum Si and dispersion Di,

otherwise the train is invalidated at the timeout expiration.

If more than three failures are experienced, the hosts assume

that the network is congested and the experiment is restarted

by halving the train length. The computation is considered to

be completed when n valid experiments are achieved. Then,

in order to terminate the estimation, an END message from

the Estimator to the Prober is sent. Finally, the bottleneck

capacity value is calculated by applying equation 1 selecting

the dispersion value related to the lowest delay sum Sm among

the collected samples. Once the first computation is completed,

Prober and Estimator exchange their roles and the procedure

is repeated, obtaining an estimation of the bottleneck capacity

both in uplink and downlink for each of the hosts.

B. SmartProbe energy-saving features

SmartProbe takes cue from the technique described in [2]

by improving some of its features leveraging energy- and

cost-saving rationales, in order to use the smallest amount

of resources to achieve a correct result and, at the same

time, to not drain the battery of the smartphones. Here

in the following are described the rationale behind these

enhancements in detail.

1) Packet train length k: The choice of a proper value k is

one of the main differences between PBProbe and SmartProbe.

In PBProbe, the value of k is chosen dynamically by analyzing

the time dispersion and increasing it ten-fold each time a train

is received with a dispersion value D lower than a preset

dispersion threshold Dthresh. As already shown in Section III

(Table I), this can lead to an excessive and unnecessary amount

of traffic on smartphones. The SmartProbe approach is exactly

the opposite of the PBProbe choice and exploits the a priori

knowledge about the type of network to which the hosts

are connected – which can be extracted directly from the

smartphone operating system – and about the nominal capacity

1982



 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60  70  80

C
ap

ac
ity

 [M
bp

s]

K

Median C
Quartile

90th percentile

Fig. 3: Dispersion experiment results

of that type of network, in order to identify an ideal value

koptimal which should be used in the estimation of C (see

Equation 1). The nominal capacity typically represents an

upper bound of the real wireless environments [13], thus it

can be used to understand the minimum number of packets

required to experience a dispersion value larger than Dthresh.

The value of k then can thus be dynamically lowered by the

application whenever one of the hosts receive too many trains

experiencing packet loss. This can be caused for example by

the presence of traffic shapers on the link or by excessive

contending traffic on the wireless access point. In those

cases, the application still tries to retrieve a correct value of

bottleneck capacity by lowering the value of k up to 1, i.e.

using a simple packet pair.

In PBProbe, Dthresh was set to 1ms basing on experimental

results obtained from wired servers, which have quite

a different amount of resources from smartphones. To

understand the ideal value of Dthresh on smartphones, we

performed an analysis on the behavior of SmartProbe on

an unloaded 802.11g network by manually imposing the

value of k and running 100 measurement campaigns for each

value of k chosen. The results are depicted in Fig. 3. As

can be seen, the average results of the tool converge to a

defined capacity value by using trains composed by more

than forty packets. These values of k, by applying equation 1,

lead to a dispersion value D ∼ 10ms, which we consider

to be the minimum dispersion value Dthresh such that the

effects of operating system interferences are minimized in the

estimation of C. Thus, it is possible to obtain the ideal value

of k from which the computation shall start by applying

equation 1, and considering C as the nominal capacity in

each network and D as Dthresh. These values can be used

then on real experiments, since the dispersions collected on

real wireless networks will be surely larger than the ideal

case. Table II summarizes the values of k found for each

wireless network analyzed: the faster the network is, the

larger is the value required. The SmartProbe algorithm is

described in detail in Fig. 5.

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190

E
rr

or
 [M

bp
s]

Number of trains [n]

Median C
Quartile

90th percentile

Fig. 4: Train length experiment results

2) Number of train per campaign n: Another factor that

makes PBProbe unusable on smartphones is that it uses a fixed

amount of 200 trains for each measurement campaign, that was

a value found to be valid by the same authors of PBProbe in

[5] and [14]. In order to decrease the amount of data sent – and

therefore the costs in terms of connection fee and smartphone

battery consumption – n has to be lowered consistently. To

find a proper value of n we performed a campaign of tests

consisting in 100 experiments with n = 200, by connecting a

smartphone to an 802.11g wireless network and connecting a

server on the same wired LAN of the wireless access point. In

each test we firstly retrieved the most reliable capacity C200

by using the full sample list like in PBProbe computation.

Then, we compute the capacity Cm that would be retrieved by

considering only the first m trains and we compute the relative

error between C200 and Cm. Fig. 4 shows the distribution of

the medians of the relative errors computed for each m, as well

as its inter-quartile and 90th percentile ranges. As we can see,

the median value of the errors is close to zero after m = 60,

meaning that n = m = 60 is enough to infer the correct value

of capacity most of the times. Obviously, the decrease of the

amount of attempts performed leads to an unavoidable leakage

of accuracy. However in an environment where energy-saving

is fundamental, the choice of n = 60 represents a good trade-

off between accuracy and performances. This value is valid

also for other wireless network technologies.

Network k

WiFi 802.11
b 8

a,g 44
n 374

Mobile 2G GPRS 1
EDGE 1

Mobile 3G UMTS 1
HSPA 11

Mobile 4G LTE 271

Table II: Train size k per wireless technology

1983



Send START packet
i ← 0
failed ← 0
Dmin ← inf
Smin ← inf
k ← koptimal

while(i < n)
Set Timeout
Receive packet train i
if (Timeout triggered)

failed ← failed+1
if ( failed == 3)

i ← 0
k ← k/2
Dmin ← inf
Smin ← inf
continue

else
Measure Di and Si

if (Si < Smin)
Smin ← Si

Dmin ← Di

i ← i+1
Calculate capacity with Dmin

Send END packet

Fig. 5: SmartProbe estimation algorithm

3) Timeout value: PBProbe uses an adaptive timeout in

order to achieve a good trade-off between algorithm efficiency

and link load balancing, in order to not overload the narrow

link. Specifically, the value of the timeout in PBProbe is

calculated as G = 2 · Dmin − (t2 − t1) where (t2 − t1)
represents the time elapsed between sending the RTS packet

and receiving the last packet of a packets train, and Dmin

is the minimum value of dispersion experienced during the

algorithm. Hence a new packet train is requested each G
seconds. In a wired environment this is tolerable since the

dispersions values inside an experiment are close to each

other, but this is no longer valid in a wireless environment.

In wireless experiments two consecutive trains may experience

extremely different dispersions due to the high link variability.

For example, in 802.11 different SNR may lead to a different

transmission rate, and thus to different measured values of

capacity. Using the adaptive timeout suggested by PBProbe,

this could lead to a high amount of valid but slow attempts

that are discarded, with the result of requesting additional

unrequired packet trains, thus increasing the data consumption.

Moreover, introducing a gap between two consecutive trains

may lead to trigger energy-saving mechanisms associated to

the wireless technology used [15], leading to unwanted delays

and, thus, to measurement errors. In SmartProbe we solved this

problem by using a fixed value for the timeout large enough

to tolerate the wireless link variability, and by imposing an

immediate transmission of the following train as soon as an

Fig. 6: IIT-CNR Wireless scenario

Network PBProbe [MB] Smartprobe [MB] Smartprobe worst case [MB]

WiFi 802.11
b ∼ 3 ∼ 0.7 (-77%) ∼ 1.7 (-44%)

a,g ∼ 30 ∼ 4 (-87%) ∼ 8.2 (-73%)
n ∼ 300 ∼ 33.7 (-89%) ∼ 67.6 (-78%)

Mobile 2G GPRS ∼ 0.6 ∼ 0.2 (-67%) ∼ 0.2 (-67%)
EDGE ∼ 0.6 ∼ 0.2 (-67%) ∼ 0.2 (-67%)

Mobile 3G UMTS ∼ 3 ∼ 0.2 (-93%) ∼ 0.2 (-93%)
HSPA ∼ 30 ∼ 1 (-96%) ∼ 2 (-94%)

Mobile 4G LTE ∼ 300 ∼ 24 (-92%) ∼ 48 (-84%)

Table III: PBProbe vs SmartProbe data usage comparison

(packet size = 1500B, total size = packet size ∗K)

attempt is completed. One attempt is repeated only if the

timeout triggers, since it means that the estimation is unreliable

due to the presence of packet loss. A strict requirement for our

timeout value is that it has to be higher or equal than RTT+D
considering the worst case. In order to calculate the worst

case of dispersion, we considered 50 kbps as a lower bound

for our estimations, since SmartProbe is designed to be used

with commercial networks. Moreover, we consider k = 1 as

the minimum amount of data required by the tool to work,

i.e. a packet pair. Therefore, we achieve a dispersion value

of D = 480ms. About the RTT worst case, we consider the

case where the hosts are located the farthest as possible. As

a plausible value of RTT, we used twice the time required

to ping a machine in Australia from Italy (about 750ms). In

addition to that, we also modified the algorithm of PBProbe by

avoiding cases of deadlocks caused by UDP packet loss: the

timeout is set each time a RTS message is sent, it is reset each

time a train is correctly received and the attempt is performed

once again whenever the timeout triggers.

V. RESULTS

Since SmartProbe is an enhancement of PBProbe on wire-

less networks, it is straightforward that the most interesting

analysis regards a comparison between the data usage required

by the the two tools. Considering a Dthresh = 10ms, PBProbe

would require trains of 100 packets to estimate the capacity

of a 802.11g network according to Table I. Thus, a PBProbe

 23

 24

 25

 26

 27

 28

 29

 30

8 9 10 11 12 13 14 15 16

C
ap

ac
ity

 [M
bp

s]

Hours

Median C
Quartile

90th percentile

Fig. 7: Bottleneck capacity experienced by smartphone in IIT-

CNR Wireless scenario

1984



estimation requires n = 200 trains with k = 100, for a total

of about 30 MB of data. SmartProbe, on the other hand, starts

the estimation using a value n = 60 and k = 44 (see Table II)

for a total of about 3.9 MB, about the 13% of data used by

PBProbe. On the other hand, by considering the worst case

in which a persistent packet loss causes the length of packet

trains to decrease to the smaller value, i.e. k = 1, SmartProbe

would require 8.19 MB of data1, still the 27% of data sent by

PBProbe in the ideal case. Results for other types of wireless

networks can be found in Table III. By sending a smaller

amount of data, SmartProbe obtains obvious benefits in terms

of battery consumption and user economic costs.
SmartProbe has also proved to be able to retrieve good re-

sults from real world wireless environments. As a significative

case study, we performed an analysis on the wireless network

used commonly during work hours by 20-30 researchers of

IIT-CNR in Pisa. The test scenario is depicted in Fig. 6. The

server is an Intel(R) Pentium(R) 4 CPU 2.80GHz machine with

2 Gb RAM running Linux Ubuntu 11.04 Natty Narwhal and is

running a Java version of SmartProbe, while the smartphone

is a Samsung Galaxy Nexus GT-19250 running Android 4.0.3

ICS (Ice Cream Sandwich). Both the server and the access

point are connected on the same Ethernet LAN with 100Mbps

NICs, while the smartphone is connected via 802.11g to

the access point. We performed 100 experiments each hour

from 8AM to 4PM with k = 50 and n = 60, testing the

tool on different network loads. Results experienced by the

smartphone can be found in Fig. 7 in terms of median, inter-

quartile and 90th percentile every hour. SmartProbe results are

quite stable around the median value, meaning that SmartProbe

is not strongly affected by the different volumes of traffic

generated at different working hours.

VI. CONCLUSIONS

In this paper we described SmartProbe, an enhanced version

of PBProbe tailored for smartphones. SmartProbe is designed

to be used on smartphones and devices with an energy-saving

perspective, and its choices have been aimed at optimizing

parameters such as execution time and cost in the broadest

sense. To the best of our knowledge, in the current state of

the art does not exists any application that – in addition to

accurately measure the bottleneck link capacity by minimizing

the effect of smartphone operating system interferences – pays

attention to reducing the amount of generated traffic and,

consequently, the energy consumption. Thanks to its ability

to adapt itself to the type of wireless networks and to the

choices made on the size of the trains and on the number of

trains used, the tool is able to guarantee together with a high

precision even an upper bound in terms of amount of data

sent, which has been proved to be markedly better than those

which could provide PBProbe in its optimal case. Note also

that, being based on PBProbe, our methodology also works

on the wired environments.
Smartprobe provides to end users a useful tool to understand

the quality of their Internet connections. Wireless links and

1In the worst case, SmartProbe would send firstly n = 60 trains with
k = 44, then n = 60 trains with k = 22, and so on with k = 11, 5, 2, 1,
leading to a total of 5,460 packets, i.e. 8.19 MB of data

home xDSL connections typically represent the narrowest link

in terms of capacity in any Internet path. With Smartprobe

it is possible to retrieve the effective service quality offered

by their service providers, given that one of the two hosts

is located on a network that cannot be the bottleneck of

the tested path. In this perspective, we plan to introduce

Smartprobe in the Portolan infrastructure [16] in the very next

future. Portolan is a crowdsourcing-based system which aims

to discover from smartphones the Internet topology together

with its characteristics. We plan to introduce in the Portolan

architecture a high-performance server connected via Gigabit

Ethernet to the Internet and which is intended to be one of

the two ends of Smartprobe. We also plan to improve the

Capacity estimation accuracy by introducing a preliminary

phase dedicated to contention-based media access wireless

protocols (e.g. Wireless LANs) [17].

REFERENCES

[1] C. Dovrolis, R. Prasad, M. Murray, and K. C. Claffy, “Bandwidth
estimation: metrics, measurement techniques, and tools,” IEEE Network,
vol. 17, no. 6, pp. 27–35, Apr 2003.

[2] L.-J. Chen, T. Sun, B.-C. Wang, M. Y. Sanadidi, and M. Gerla,
“PBProbe: A Capacity Estimation Tool for High Speed Networks,”
Comput. Commun., vol. 31, no. 17, pp. 3883–3893, 2008.

[3] R. L. Carter and M. E. Crovella, “Measuring bottleneck link speed
in packet-switched networks,” Performance Evaluation, vol. 27-28, pp.
297–318, Oct 1996.

[4] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet-dispersion tech-
niques and a capacity-estimation methodology,” IEEE/ACM Transaction
on Networking, vol. 12, no. 6, pp. 963–977, Dec 2004.

[5] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi, “CapProbe:
a Simple and Accurate Capacity Estimation Technique,” in Proceedings
of the ACM SIGCOMM ’04, 2004, pp. 67–78.

[6] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks,” in
Proceedings of GLOBECOM ’00, vol. 1, 2000, pp. 415–420.

[7] M. Li, M. Claypool, and R. Kinicki, “Wbest: a bandwidth estimation tool
for ieee 802.11 wireless networks,” in Proceedings of Local Computer
Networks (LCN) ’08, 2003, pp. 39–44.

[8] L.-J. Chen, T. Sun, G. Yang, M. Y. Sanadidi, and M. Gerla, “Adhoc
probe: End-to-end capacity probing in wireless ad hoc networks,”
Wireless Networks, vol. 15, no. 1, pp. 111–126, Jan 2009.

[9] M. Li, M. Claypool, and R. Kinicki, “Packet dispersion in ieee 802.11
wireless networks,” in Proceedings of Local Computer Networks (LCN)
’06, 2006, pp. 721–729.

[10] R. Prasad, M. Jain, and C. Dovrolis, “Effects of interrupt coalescence on
network measurements,” in Proceedings of Passive and Active Network
Measurement (PAM) Workshop ’04, vol. 3015, 2004, pp. 247–256.

[11] S. Bauer and D. Clarke, “Understanding broadband speed measure-
ments,” 38th Research Conference on Communication, Information and
Internet Policy, Sep 2011.

[12] C. Dovrolis, P. Ramanathan, and D. Moore, “What Do Packet Dispersion
Techniques Measure?” in Proceedings of the IEEE INFOCOM ’01,
2001, pp. 905–914.

[13] F. Cal, M. Conti, and E. Gregori, “Dynamic tuning of the ieee 802.11
protocol to achieve a theoretical throughput limit,” IEEE/ACM Transac-
tions on Networking, vol. 8, pp. 785–799, 2000.

[14] L.-J. Chen, T. Sun, G. Yang, M. Y. Sanadidi, and M. Gerla, “Monitoring
access link capacity using tfrc probe,” Computer Communications,
vol. 29, no. 10, pp. 1605–1613, Jun 2006.

[15] “IEEE Draft Standard for Local and Metropolitan Area Networks
- Specific Requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,” IEEE
P802.11ad/D8.0, May 2012 (Draft Amendment based on IEEE 802.11-
2012), pp. 1–667, 2012.

[16] “University of Pisa Portolan project,” http://portolan.iet.unipi.it.
[17] P. Kanuparthy, C. Dovrolis, K. Papagiannaki, S. Seshan, and

P. Steenkiste, “Can User-level Probing Detect and Diagnose Com-
mon Home-WLAN Pathologies,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 1, pp. 7–15, 2012.

1985


